跳转至

LeetCode(81-90)

81. Search in Rotated Sorted Array II

  • Binary Search

Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand.

(i.e., [0,0,1,2,2,5,6] might become [2,5,6,0,0,1,2]).

You are given a target value to search. If found in the array return true, otherwise return false.

Example 1:

Input: nums = [2,5,6,0,0,1,2], target = 0
Output: true

Example 2:

Input: nums = [2,5,6,0,0,1,2], target = 3
Output: false

Follow up:

  • This is a follow up problem to Search in Rotated Sorted Array, where nums may contain duplicates.
  • Would this affect the run-time complexity? How and why?

Solution

此题与CI-(11)旋转数组的最小数字非常类似。
也就是说在Search in Rotated Sorted Array基础上考虑一种特殊情况:{1, 0, 1, 1, 1}{1, 1, 1, 0, 1}。在这两个数组中最小数字为别位于左右半区。所以上面的算法一定会失败一种情况。因此,当lo,mid,hi对应的数字都相等时,我们必须采用顺序查找。

Runtime 1 ms

class Solution {
    public boolean search(int[] nums, int target) {
        final int N = nums.length;

        int lo = 0, hi = N - 1;
        int mid;

        while (lo < hi) {
            mid = (lo + hi) >>> 1;

            if (nums[mid] == nums[lo] && nums[lo] == nums[hi]) {
                lo = searchInOrder(nums, lo, hi);
                break;
            }

            if (nums[mid] > nums[hi]) {
                lo = mid + 1;
            } else {
                hi = mid;
            }
        }

        int pivot = lo;
        lo = 0;
        hi = N - 1;
        while (lo <= hi) {
            mid = (lo + hi) >>> 1;
            int realMid = (mid + pivot) % N;
            if (nums[realMid] == target) {
                return true;
            } else if (nums[realMid] > target) {
                hi = mid - 1;
            } else {
                lo = mid + 1;
            }
        }

        return false;
    }

    private int searchInOrder(int[] nums, int start, int end) {
        for (int i = start + 1; i <= end; i++) {
            if (nums[i - 1] > nums[i]) {
                return i;
            }
        }

        return start;
    }
}

82. Remove Duplicates from Sorted List II

  • Linked List

Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.

Example 1:

Input: 1->2->3->3->4->4->5
Output: 1->2->5

Example 2:

Input: 1->1->1->2->3
Output: 2->3

Solution

此题同CI-18-2-删除链表中重复的结点

Runtime 1 ms

/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode(int x) { val = x; }
 * }
 */
class Solution {
    public ListNode deleteDuplicates(ListNode head) {
        if (head == null || head.next == null) {
            return head;
        }

        // create a head node
        ListNode h = new ListNode(0);
        h.next = head;

        ListNode t = h, p = t.next, q = p.next;

        while (q != null) {
            if (p.val == q.val) {
                while (q != null && p.val == q.val) {
                    p = p.next;
                    q = q.next;
                }
                t.next = q;
                if (q != null) {
                    q = q.next;
                    p = p.next;
                }
            } else {
                q = q.next;
                p = p.next;
                t = t.next;
            }
        }

        return h.next;
    }
}

83. Remove Duplicates from Sorted List

  • Linked List

Given a sorted linked list, delete all duplicates such that each element appear only once.

Example 1:

Input: 1->1->2
Output: 1->2

Example 2:

Input: 1->1->2->3->3
Output: 1->2->3

Solution

Runtime 0 ms

/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode(int x) { val = x; }
 * }
 */
class Solution {
    public ListNode deleteDuplicates(ListNode head) {
        if (head == null || head.next == null) return head;

        ListNode q = head, p = q.next;

        while (p != null) {
            if (q.val == p.val) {
                q.next = p.next;
                p.next = null;
                p = q.next;
            } else {
                q = q.next;
                p = p.next;
            }
        }

        return head;
    }
}

84. Largest Rectangle in Histogram

  • Array
  • Stack

Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.
容器中数据被中间的一个或两个数据分隔成为两部分
容器中数据被中间的一个或两个数据分隔成为两部分

1. Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3].
2. The largest rectangle is shown in the shaded area, which has area = 10 unit.

Example:

Input: [2,1,5,6,2,3]
Output: 10

Solution

对任意的i,从左边往前找到第一个小于当前高度的bar,其下标记为lessFromLeft[i],若没有找到,则设为-1。
同样,对于任意的i,从右边往后找到第一个小于当前高度的bar,其下标记为lessFromRight[i],若没有找到,则设为n。
(lessFromRight[i] - lessFromLeft[i] - 1)表示的就是当前i的解,图解如下图:

(lessFromRight[i] - lessFromLeft[i] - 1)的意义

(lessFromRight[i] - lessFromLeft[i] - 1)的意义

这样就容易理解为什么lessFromLeft[i]的默认值为-1,lessFromRight[i]的默认值为n了。

Runtime 2 ms

class Solution {
    public int largestRectangleArea(int[] height) {
        if (height == null || height.length == 0) {
            return 0;
        }
        int[] lessFromLeft = new int[height.length]; // idx of the first bar the left that is lower than current
        int[] lessFromRight = new int[height.length]; // idx of the first bar the right that is lower than current
        lessFromRight[height.length - 1] = height.length;
        lessFromLeft[0] = -1;

        for (int i = 1; i < height.length; i++) {
            int p = i - 1;

            while (p >= 0 && height[p] >= height[i]) {
                p = lessFromLeft[p];
            }
            lessFromLeft[i] = p;
        }

        for (int i = height.length - 2; i >= 0; i--) {
            int p = i + 1;

            while (p < height.length && height[p] >= height[i]) {
                p = lessFromRight[p];
            }
            lessFromRight[i] = p;
        }

        int maxArea = 0;
        for (int i = 0; i < height.length; i++) {
            maxArea = Math.max(maxArea, height[i] * (lessFromRight[i] - lessFromLeft[i] - 1));
        }

        return maxArea;
    }
}

85. Maximal Rectangle

  • Dynamic Programming

Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing only 1's and return its area.

Example:

Input:
[
   ["1","0","1","0","0"],
   ["1","0","1","1","1"],
   ["1","1","1","1","1"],
   ["1","0","0","1","0"]
]
Output: 6

Solution: Dynamic Programming

Solution比较难理解。总体来说可以采用DP解法,一行一行遍历。对某一个具体的坐标,有如下解:

\[ f(i, j)=[right(i,j) - left(i,j)] * height(i,j) \]

其中:

  • \(height(i,j)\)表示上方连续的1的个数
  • \(left(i, j)\)表示对任意k∈[j, i],使得height[k] >= height[i]成立的最左边的索引j
  • \(right(i, j)\)表示对任意k∈[i, j],使得height[k] >= height[i]成立的最右边的索引j

这样一来,\(left\)\(right\)就能表示包含当前点的、且高为\(height\)的矩形的边界。

Solution解题过程

Runtime 7 ms

class Solution {
    public int maximalRectangle(char[][] matrix) {
        if (matrix == null || matrix.length == 0) return 0;

        final int M = matrix.length;
        final int N = matrix[0].length;
        int[] left = new int[N];
        int[] right = new int[N];
        int[] height = new int[N];
        int max = Integer.MIN_VALUE;
        Arrays.fill(right, N);

        for (int i = 0; i < M; i++) {
            int curL = 0, curR = N;
            // right
            for (int j = N - 1; j >= 0; j--) {
                if (matrix[i][j] == '1') {
                    right[j] = Math.min(right[j], curR);
                } else {
                    right[j] = N;
                    curR = j;
                }
            }

            for (int j = 0; j < N; j++) {
                if (matrix[i][j] == '1') {
                    // height
                    height[j]++;
                    // left
                    left[j] = Math.max(left[j], curL);
                } else {
                    // height
                    height[j] = 0;
                    // left
                    left[j] = 0;
                    curL = j + 1;
                }

                max = Math.max(max, (right[j] - left[j]) * height[j]);
            }
        }

        return max;
    }
}

86. Partition List

  • Linked List

Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.

You should preserve the original relative order of the nodes in each of the two partitions.

Example:

Input: head = 1->4->3->2->5->2, x = 3
Output: 1->2->2->4->3->5

Solution

本题要求将值小于x的节点放置到值大于等于x的节点之前,同时要保持相对位置不变。实际上就是一个链表的插入问题。

我们可以使用指针p表示可以插入的位置,使用指针q来表示待插入的节点。q遍历时判断是否需要插入,以及往后找到第一个可以待插入的节点,插入到p.next上。注意插入完成后,重置指针时考虑[3,1,2], x=3的情况。

解题过程

Runtime 0 ms

/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode(int x) { val = x; }
 * }
 */
class Solution {
    public ListNode partition(ListNode h, int x) {
        if (h == null || h.next == null) {
            return h;
        }

        ListNode head = new ListNode(0);
        head.next = h;

        ListNode p = head, q = head.next;

        while (q != null) {
            if(q.val < x) {
                p = p.next;
                q = q.next;
            } else {
                ListNode t = q;
                while (q != null && q.val >= x) {
                    t = q;
                    q = q.next;
                }
                if (q != null) {
                    ListNode t1 = p.next, t2 = q.next;
                    p.next = q;
                    q.next = t1;
                    t.next = t2;
                    p = p.next;
                    q = t;
                }
            }
        }

        return head.next;
    }
}

87. Scramble String

  • String
  • Dynamic Programming

Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.

Below is one possible representation of s1 = "great":

    great
   /       gr   eat
 / \    /   g  r  e   at
            /            a   t

To scramble the string, we may choose any non-leaf node and swap its two children.

For example, if we choose the node "gr" and swap its two children, it produces a scrambled string "rgeat".

    rgeat
   /       rg   eat
 / \    /   r  g  e   at
            /            a   t

We say that "rgtae" is a scrambled string of "great".

Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.

Example 1:

Input: s1 = "great", s2 = "rgeat"
Output: true

Example 2:

Input: s1 = "abcde", s2 = "caebd"
Output: false

Solution

不要被题目所迷惑,不需要建立二叉树,可以直接字符串层面进行比较。两边各取[1, N-1]的长度的字符串进行比较,同时拿剩下的字符串进行比较即可。

解题过程

Runtime 2 ms

class Solution {
    public boolean isScramble(String s1, String s2) {
        if (s1.equals(s2)) return true;
        if (s1.length() != s2.length()) return false;

        final int N = s1.length();
        int[] map = new int[26];
        for (int i = 0; i < N; i++) {
            map[s1.charAt(i) - 'a']++;
            map[s2.charAt(i) - 'a']--;
        }
        for (int i = 0; i < 26; i++) {
            if (map[i] != 0) return false;
        }

        for (int i = 1; i < N; i++) {
            if (isScramble(s1.substring(0, i), s2.substring(0, i)) && isScramble(s1.substring(i), s2.substring(i))) {
                return true;
            }
            if (isScramble(s1.substring(0, i), s2.substring(N - i)) && isScramble(s1.substring(i), s2.substring(0, N - i))) {
                return true;
            }
        }

        return false;
    }
}

88. Merge Sorted Array

  • Array
  • Two Pointers

Given two sorted integer arrays nums1 and nums2, merge nums2 into nums1 as one sorted array.

Note:

  • The number of elements initialized in nums1 and nums2 are m and n respectively.
  • You may assume that nums1 has enough space (size that is greater or equal to m + n) to hold additional elements from nums2.

Example:

Input:
nums1 = [1,2,3,0,0,0], m = 3
nums2 = [2,5,6], n = 3
Output: [1,2,2,3,5,6]

Solution

Runtime 0 ms

class Solution {
    public void merge(int[] nums1, int m, int[] nums2, int n) {
        int i = m + n - 1;
        m--;
        n--;

        while (i >= 0) {
            if (m < 0)
                nums1[i--] = nums2[n--];
            else if (n < 0)
                nums1[i--] = nums1[m--];
            else if (nums1[m] > nums2[n]) {
                nums1[i--] = nums1[m--];
            } else {
                nums1[i--] = nums2[n--];
            }
        }
    }
}

89. Gray Code

  • Backtracking

The gray code is a binary numeral system where two successive values differ in only one bit.

Given a non-negative integer n representing the total number of bits in the code, print the sequence of gray code. A gray code sequence must begin with 0.

Example 1:

Input: 2
Output: [0,1,3,2]
Explanation:
00 - 0
01 - 1
11 - 3
10 - 2
For a given n, a gray code sequence may not be uniquely defined. For example, [0,2,3,1] is also a valid gray code sequence.
00 - 0
10 - 2
11 - 3
01 - 1

Example 2:

Input: 0
Output: [0]
Explanation: We define the gray code sequence to begin with 0. A gray code sequence of n has size = 2n, which for n = 0 the size is 20 = 1. Therefore, for n = 0 the gray code sequence is [0].

Solution

从下面的解题过程中可以看出,\(f(n)\)\(f(n-1)\)之间有很大的关系,只需要在原来\(f(n-1)\)的基础上加上一份最高位置为1的 顺序相反\(f(n-1)\)就得到了\(f(n)\)

解题过程

Runtime 1 ms

class Solution {
    public List<Integer> grayCode(int n) {
        List<Integer> result = new ArrayList<>();
        result.add(0);

        if (n == 0) return result;

        for (int i = 0; i < n; i++) {
            for (int j = result.size() - 1; j >= 0; j--) {
                int tmp = result.get(j) | (int) Math.pow(2, i);
                result.add(tmp);
            }
        }

        return result;
    }
}

90. Subsets II

  • Backtracking

Given a collection of integers that might contain duplicates, nums, return all possible subsets (the power set).

Note: The solution set must not contain duplicate subsets.

Example:

Input: [1,2,2]
Output:
[
   [2],
   [1],
   [1,2,2],
   [2,2],
   [1,2],
   []
]

Solution

我们可以注意到,如果两个相邻的数相同,且前者没有被使用过,那么这个组合是被允许的。
为了使大小相等的数都在一起,可以先排序一下。

解题过程

Runtime 1 ms, faster than 100.00%.

class Solution {
    public List<List<Integer>> subsetsWithDup(int[] nums) {
        List<List<Integer>> result = new ArrayList<>();

        Arrays.sort(nums);
        subsetsWithDupInner(nums, 0, new ArrayList<>(), new boolean[nums.length], result);

        return result;
    }

    private void subsetsWithDupInner(int[] nums, int index, List<Integer> solution, boolean[] visited, List<List<Integer>> result) {
        result.add(new ArrayList<>(solution));

        for (int i = index; i < nums.length; i++) {
            if (i == 0 || 
                (nums[i - 1] != nums[i]) ||
                (nums[i - 1] == nums[i] && visited[i - 1])) {
                solution.add(nums[i]);
                visited[i] = true;
                subsetsWithDupInner(nums, i + 1, solution, visited, result);
                visited[i] = false;
                solution.remove(solution.size() - 1);
            }
        }
    }
}

评论